metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetrakis(μ -propanoato- $\kappa^2 O:O'$)bis[(1,10-phenanthroline- $\kappa^2 N,N'$)-(propanoato- $\kappa^2 O,O'$)samarium(III)]

Chun-Xiang Wang, Zhi-Feng Li,* Shu-Hua Xiong and Ping Wang

School of Materials and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China Correspondence e-mail: jxlzfeng@yahoo.com.cn

Received 9 November 2007; accepted 30 November 2007

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.004 Å; R factor = 0.021; wR factor = 0.064; data-to-parameter ratio = 16.9.

The title complex, $[Sm_2(C_3H_5O_2)_6(C_{12}H_8N_2)_2]$, is a dinuclear centrosymmetric molecule, in which two crystallographically equivalent Sm atoms, separated by 3.9502 (2) Å, are bridged by four propanoate anions. Each Sm atom is coordinated by two N atoms from one chelating phenanthroline ligand and seven carboxylate O atoms from five propanoate anions, to form a distorted tricapped trigonal prism.

Related literature

For related literature, see: Lu *et al.* (2000); Lu, Lu, Wu & Wang (2001); Lu, Wu & Wang (2001); Wang *et al.* (2005).

Experimental

Crystal data $[Sm_2(C_3H_5O_2)_6(C_{12}H_8N_2)_2]$ $M_r = 1099.55$

Monoclinic, $P2_1/n$ a = 9.5740 (2) Å

b = 18.3182(5) A	
c = 12.7307 (3) Å	
$\beta = 107.103 \ (1)^{\circ}$	
V = 2133.95 (9) Å ³	
7 - 2	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{min} = 0.508, T_{max} = 0.613$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.022$ 275 parameters $wR(F^2) = 0.065$ H-atom parameters constrainedS = 0.96 $\Delta \rho_{max} = 1.10 \text{ e } \text{ Å}^{-3}$ 5133 reflections $\Delta \rho_{min} = -0.66 \text{ e } \text{ Å}^{-3}$

Mo $K\alpha$ radiation $\mu = 2.79 \text{ mm}^{-1}$

 $0.25 \times 0.21 \times 0.17$ mm

22209 measured reflections

5133 independent reflections

4563 reflections with $I > 2\sigma(I)$

T = 290 (2) K

 $R_{\rm int}=0.030$

Table 1 Selected bond lengths (Å).

Sm1-O1	2.5901 (16)	Sm1-O5	2.4030 (16)
Sm1-O2	2.5432 (15)	Sm1-O6 ⁱ	2.4023 (15)
Sm1-O2 ⁱ	2.3783 (14)	Sm1-N1	2.6528 (19)
Sm1-O3	2.5078 (19)	Sm1-N2	2.6042 (16)
Sm1-O4	2.4608 (17)	$Sm1 \cdot \cdot \cdot Sm1^i$	3.9502 (2)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2004); software used to prepare material for publication: *SHELXTL*.

This work was supported by Jiangxi Provincial Natural Science Foundation (grant No. 0620018) and Jiangxi University of Science and Technology Doctoral Foundation (grant No. 2003-1).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2147).

References

- Bruker (2004). *APEX2* (Version 1.27), *SAINT* (Version 6.0) and *SHELXTL* (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Lu, Y.-Q., Lu, W.-M., Wu, B. & Wang, L.-N. (2001). J. Coord. Chem. 53, 15–23.
- Lu, W.-M., Wu, B. & Wang, L.-N. (2001). Chem. J. Chin. Univ. 22, 535–538.
- Lu, W.-Q., Wu, B. & Zheng, X.-M. (2000). J. Chem. Cryst. **30**, 777–782. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
- Göttingen, Germany. Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen,
- Germany.
- Wang, P., Song, L.-P., Li, Z.-F. & Han, D.-Q. (2005). Z. Kristallogr. New Cryst. Struct. 220, 469–470.

Acta Cryst. (2008). E64, m102 [doi:10.1107/S1600536807064720]

Tetrakis(μ -propanoato- $\kappa^2 O:O'$)bis[(1,10-phenanthroline- $\kappa^2 N,N'$)(propanoato- $\kappa^2 O,O'$)samarium(III)]

C.-X. Wang, Z.-F. Li, S.-H. Xiong and P. Wang

Comment

In the recent years, a series of dimeric $[M(\text{phen})(C_5H_7O_2)_3]_2$ (M= La (Lu, Lu, Wu & Wang, 2001; Lu, Wu & Wang, 2001), Tb, Ho (Lu *et al.*, 2000), Dy (Wang *et al.*, 2005), $C_5H_7O_2$ = *trans*-2,3-dimethylacrylate) analogues have been reported, in which the lanthanide ions form a dinuclear centrosymmetric molecule through the coordination of bridging carboxylato groups. An isostructural complex, $[Sm(phen)(C_3H_5O_2)_3]_2$, (I), was obtained after the *trans*-2,3-dimethylacrylate ligands were replaced by propanoato ligands. Each Sm atom exhibits a distorted tricapped trigonal prism coordinated by two N atoms from one chelating phenanthroline ligand and seven carboxyl oxygen atoms from five propanoato anions (Fig. 1). The carboxylato groups exhibit three different coordination modes: a common bidentate chelating mode, a bidentate bridging

mode, and tridentate bridging mode, resulting in a dinuclear centrosymmetric molecule with the Sm1···Sm1ⁱ distance of 3.9502 (2) Å. The Sm1—O bond distances vary from 2.3784 (14)Å to 2.5901 (16)Å and the Sm1—N bond length are 2.6042 (16)Å and 2.6528 (19)Å (Table 1) similar to those found in the previously mentioned *trans*-2,3-dimethylacrylato complexes. The C—O and C—C distances are within the range of 1.242 (3)Å to 1.272 (3)Å and 1.502 (4) Å–1.515 (3) Å, respectively. The dimeric molecules are assembled into two-dimensional sheets parallel to (100) by face-to-face π - π stacking interactions. The phenanthroline rings involved in π - π stacking interactions located at (*x*, *y*, *z*) and (1 - *x*, 1 - *y*, 2 - *z*) are strictly parallel with an interplanar spacing of 3.301 (3)Å [the centroid separation of 4.492 (2) Å and the centroid offset of 3.047 (3) Å] and those located at (*x*, *y*, *z*) and (2 - *x*, 1 - *y*, 2 - *z*) with interplanar spacing of 3.371 (3) Å [the centroid separation of 4.838 (3) Å and the centroid offset of 3.470 (3) Å]. However, there are no direction-specific interactions between adjacent sheets.

Experimental

A solution obtained by dissolving 0.200 g (0.463 mmol) of Sm_2O_3 in 20 ml (36.5%) HCl was evaporated to dryness. Then 25 ml of CH₃OH / H₂O (1:1 v/v) was added followed by 0.5 ml of propanoic acid, and 0.25 g (1.261 mmol) phenanthroline with strring. A colourless solution was left for several days and crystals were obtain by slow evaporation at room temperature. Yield of 20% based on the initial Sm_2O_3 .

Refinement

H atoms attached to C atoms were included at calculated positions and treated as riding atoms, with C–H distances of 0.93 Å (aromatic), 0.97 Å (methylene) and 0.96 Å (methyl), and with $U_{iso}(H)$ values of $1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}$ for others.

Figures

Fig. 1. The dinuclear structure of the title compound with the atom numbering scheme showing displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z.]

$Tetrakis(\mu - propanoato - \kappa^2 O; O') bis[(1, 10 - phenanthroline - \kappa^2 N, N') (propanoato - \kappa^2 O, O') samarium (III)]$

Crystal data	
[Sm ₂ (C ₃ H ₅ O ₂) ₆ (C ₁₂ H ₈ N ₂) ₂]	$F_{000} = 1092$
$M_r = 1099.55$	$D_{\rm x} = 1.711 { m Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 198 reflections
a = 9.5740 (2) Å	$\theta = 2.1 - 26.7^{\circ}$
b = 18.3182 (5) Å	$\mu = 2.79 \text{ mm}^{-1}$
c = 12.7307 (3) Å	T = 290 (2) K
$\beta = 107.103 \ (1)^{\circ}$	Cloumn, colourless
$V = 2133.95 (9) \text{ Å}^3$	$0.25\times0.21\times0.17~mm$
<i>Z</i> = 2	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	5133 independent reflections
Radiation source: fine-focus sealed tube	4563 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.030$
T = 290(2) K	$\theta_{\text{max}} = 28.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)	$h = -11 \rightarrow 12$
$T_{\min} = 0.508, T_{\max} = 0.613$	$k = -24 \rightarrow 22$
22209 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.022$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0507P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.065$	$(\Delta/\sigma)_{\text{max}} = 0.012$
<i>S</i> = 0.96	$\Delta \rho_{max} = 1.10 \text{ e} \text{ Å}^{-3}$

5133 reflections

275 parameters

 $\Delta \rho_{\min} = -0.66 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL, Fc^{*}=kFc[1+0.001xFc²\lambda³/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00050 (8)

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sm1	0.603212 (11)	0.530844 (5)	0.651651 (8)	0.0277 (6)
C1	0.8823 (3)	0.41499 (14)	0.8116 (2)	0.0425 (5)
H1	0.8910	0.4065	0.7418	0.051*
C2	0.9724 (3)	0.37486 (16)	0.9002 (2)	0.0532 (6)
H2	1.0371	0.3400	0.8887	0.064*
C3	0.9625 (3)	0.38827 (16)	1.0030 (2)	0.0523 (7)
Н3	1.0208	0.3624	1.0627	0.063*
C4	0.8639 (2)	0.44146 (14)	1.01906 (18)	0.0403 (5)
C5	0.8517 (3)	0.45852 (16)	1.1256 (2)	0.0507 (7)
Н5	0.9114	0.4349	1.1872	0.061*
C6	0.7545 (3)	0.50857 (16)	1.13715 (19)	0.0490 (6)
H6	0.7460	0.5183	1.2067	0.059*
C7	0.6635 (3)	0.54731 (14)	1.04381 (18)	0.0397 (5)
C8	0.5635 (3)	0.60054 (14)	1.05310 (19)	0.0450 (6)
H8	0.5534	0.6123	1.1216	0.054*
C9	0.4809 (3)	0.63520 (14)	0.96118 (19)	0.0456 (6)
Н9	0.4151	0.6714	0.9663	0.055*
C10	0.4962 (3)	0.61560 (13)	0.85904 (18)	0.0400 (5)
H10	0.4383	0.6392	0.7967	0.048*
C11	0.6732 (3)	0.53143 (11)	0.93823 (18)	0.0333 (5)
C12	0.7774 (3)	0.47707 (11)	0.92520 (19)	0.0336 (5)
C13	0.4212 (2)	0.39864 (12)	0.61132 (16)	0.0322 (4)
C14	0.3063 (3)	0.33972 (16)	0.5805 (2)	0.0504 (6)
H14A	0.3459	0.2986	0.5505	0.060*
H14B	0.2234	0.3582	0.5230	0.060*
C15	0.2530 (4)	0.31277 (19)	0.6741 (2)	0.0685 (9)
H15A	0.3328	0.2911	0.7295	0.103*

H15B	0.1775	0.2771	0.6471	0.103*
H15C	0.2147	0.3531	0.7053	0.103*
C16	0.7414 (3)	0.66842 (13)	0.70839 (18)	0.0383 (5)
C17	0.8162 (3)	0.73884 (15)	0.7554 (3)	0.0549 (6)
H17A	0.7935	0.7762	0.6990	0.066*
H17B	0.9212	0.7316	0.7788	0.066*
C18	0.7672 (4)	0.76422 (16)	0.8528 (3)	0.0689 (9)
H18A	0.6629	0.7699	0.8304	0.103*
H18B	0.8126	0.8101	0.8790	0.103*
H18C	0.7951	0.7286	0.9106	0.103*
C19	0.7591 (2)	0.43839 (13)	0.47916 (17)	0.0352 (4)
C20	0.8978 (3)	0.40185 (17)	0.4716 (2)	0.0580 (7)
H20A	0.9536	0.4370	0.4435	0.070*
H20B	0.9561	0.3884	0.5451	0.070*
C21	0.8744 (4)	0.33504 (18)	0.4002 (3)	0.0666 (8)
H21A	0.8227	0.2989	0.4288	0.100*
H21B	0.9673	0.3157	0.3993	0.100*
H21C	0.8183	0.3478	0.3267	0.100*
N1	0.7860 (2)	0.46400 (9)	0.82208 (16)	0.0342 (4)
N2	0.58902 (19)	0.56515 (10)	0.84676 (13)	0.0328 (4)
01	0.47819 (18)	0.41818 (9)	0.70787 (12)	0.0412 (4)
O2	0.45959 (17)	0.42819 (8)	0.53367 (11)	0.0349 (3)
O3	0.60502 (17)	0.66725 (10)	0.66879 (13)	0.0425 (4)
O4	0.81734 (19)	0.61156 (9)	0.71259 (15)	0.0451 (4)
O5	0.76476 (19)	0.46719 (8)	0.57009 (14)	0.0420 (4)
O6	0.65199 (16)	0.43918 (10)	0.39479 (12)	0.0394 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sm1	0.0318 (9)	0.0357 (10)	0.0182 (9)	0.0015 (8)	0.0047 (7)	-0.0013 (7)
C1	0.0376 (13)	0.0473 (14)	0.0390 (13)	0.0044 (10)	0.0057 (10)	0.0005 (10)
C2	0.0483 (15)	0.0514 (15)	0.0538 (16)	0.0129 (12)	0.0052 (12)	0.0059 (12)
C3	0.0423 (14)	0.0595 (17)	0.0467 (15)	0.0055 (12)	-0.0008 (12)	0.0160 (12)
C4	0.0334 (12)	0.0507 (14)	0.0320 (12)	-0.0082 (11)	0.0012 (9)	0.0075 (10)
C5	0.0460 (16)	0.0687 (18)	0.0288 (13)	-0.0083 (13)	-0.0022 (11)	0.0131 (11)
C6	0.0552 (16)	0.0669 (17)	0.0224 (11)	-0.0122 (14)	0.0071 (11)	0.0029 (11)
C7	0.0441 (14)	0.0502 (13)	0.0233 (11)	-0.0129 (11)	0.0065 (10)	-0.0013 (9)
C8	0.0519 (15)	0.0567 (16)	0.0301 (12)	-0.0102 (12)	0.0181 (11)	-0.0074 (10)
C9	0.0527 (15)	0.0512 (15)	0.0387 (13)	-0.0032 (12)	0.0215 (11)	-0.0082 (10)
C10	0.0445 (13)	0.0473 (13)	0.0305 (11)	0.0021 (11)	0.0136 (10)	0.0001 (9)
C11	0.0335 (12)	0.0410 (13)	0.0240 (11)	-0.0098 (8)	0.0064 (9)	0.0003 (7)
C12	0.0291 (11)	0.0397 (13)	0.0274 (12)	-0.0080 (8)	0.0022 (9)	0.0023 (8)
C13	0.0329 (11)	0.0363 (12)	0.0272 (10)	0.0033 (9)	0.0081 (9)	0.0029 (8)
C14	0.0540 (16)	0.0587 (17)	0.0367 (13)	-0.0172 (13)	0.0092 (11)	-0.0020 (11)
C15	0.076 (2)	0.075 (2)	0.0565 (18)	-0.0412 (18)	0.0227 (16)	-0.0012 (15)
C16	0.0424 (13)	0.0419 (13)	0.0301 (11)	-0.0030 (10)	0.0102 (10)	0.0013 (9)
C17	0.0544 (16)	0.0416 (14)	0.0673 (18)	-0.0076 (12)	0.0153 (14)	-0.0041 (12)

C18	0.084 (2)	0.0476 (17)	0.071 (2)	-0.0055 (16)	0.0155 (17)	-0.0220 (14)
C19	0.0306 (11)	0.0443 (13)	0.0306 (11)	0.0030 (9)	0.0093 (9)	-0.0034 (9)
C20	0.0359 (14)	0.081 (2)	0.0528 (16)	0.0165 (13)	0.0068 (12)	-0.0200 (14)
C21	0.066 (2)	0.068 (2)	0.070 (2)	0.0218 (16)	0.0262 (16)	-0.0120 (15)
N1	0.0315 (10)	0.0411 (11)	0.0270 (10)	-0.0014 (7)	0.0031 (8)	-0.0005 (7)
N2	0.0341 (10)	0.0414 (11)	0.0230 (9)	-0.0014 (8)	0.0076 (7)	-0.0018 (7)
01	0.0459 (10)	0.0540 (10)	0.0222 (7)	-0.0113 (8)	0.0076 (7)	0.0010 (6)
O2	0.0433 (10)	0.0396 (9)	0.0231 (10)	0.0012 (7)	0.0066 (6)	-0.0013 (6)
O3	0.0418 (10)	0.0357 (10)	0.0365 (9)	0.0029 (7)	0.0065 (7)	-0.0011 (8)
O4	0.0387 (9)	0.0404 (10)	0.0526 (11)	0.0004 (7)	0.0077 (8)	-0.0032 (7)
O5	0.0359 (10)	0.0584 (12)	0.0301 (9)	0.0114 (7)	0.0068 (7)	-0.0070 (6)
O6	0.0314 (8)	0.0551 (10)	0.0308 (8)	0.0058 (8)	0.0069 (7)	-0.0061 (7)

Geometric parameters (Å, °)

Sm1—O1	2.5901 (16)	C11—N2	1.355 (3)
Sm1—O2	2.5432 (15)	C11—C12	1.453 (3)
Sm1—O2 ⁱ	2.3783 (14)	C12—N1	1.361 (3)
Sm1—O3	2.5078 (19)	C13—O1	1.242 (3)
Sm1—O4	2.4608 (17)	C13—O2	1.272 (2)
Sm1—O5	2.4030 (16)	C13—C14	1.508 (3)
Sm1—O6 ⁱ	2.4023 (15)	C14—C15	1.511 (4)
Sm1—N1	2.6528 (19)	C14—H14A	0.9700
Sm1—N2	2.6042 (16)	C14—H14B	0.9700
Sm1—Sm1 ⁱ	3.9502 (2)	C15—H15A	0.9600
C1—N1	1.321 (3)	C15—H15B	0.9600
C1—C2	1.409 (4)	C15—H15C	0.9600
C1—H1	0.9300	C16—O3	1.254 (3)
C2—C3	1.362 (4)	C16—O4	1.262 (3)
С2—Н2	0.9300	C16—C17	1.511 (3)
C3—C4	1.413 (4)	C17—C18	1.521 (4)
С3—Н3	0.9300	С17—Н17А	0.9700
C4—C12	1.399 (3)	С17—Н17В	0.9700
C4—C5	1.430 (4)	C18—H18A	0.9600
C5—C6	1.345 (4)	C18—H18B	0.9600
С5—Н5	0.9300	C18—H18C	0.9600
C6—C7	1.437 (3)	C19—O6	1.248 (3)
С6—Н6	0.9300	C19—O5	1.259 (3)
C7—C8	1.396 (4)	C19—C20	1.515 (3)
C7—C11	1.405 (3)	C20—C21	1.502 (4)
C8—C9	1.361 (4)	C20—H20A	0.9700
С8—Н8	0.9300	С20—Н20В	0.9700
C9—C10	1.398 (3)	C21—H21A	0.9600
С9—Н9	0.9300	C21—H21B	0.9600
C10—N2	1.323 (3)	C21—H21C	0.9600
С10—Н10	0.9300		
O2 ⁱ —Sm1—O6 ⁱ	75.03 (5)	С8—С9—Н9	120.4
O2 ⁱ —Sm1—O5	74.43 (6)	С10—С9—Н9	120.4

O6 ⁱ —Sm1—O5	137.89 (5)	N2—C10—C9	123.2 (2)
O2 ⁱ —Sm1—O4	93.86 (6)	N2—C10—H10	118.4
O6 ⁱ —Sm1—O4	129.27 (6)	С9—С10—Н10	118.4
O5—Sm1—O4	81.11 (6)	N2—C11—C7	122.5 (2)
O2 ⁱ —Sm1—O3	76.42 (5)	N2—C11—C12	117.99 (19)
$O6^{i}$ Sm1 $-O3$	76.95 (6)	C7—C11—C12	119.5 (2)
O5—Sm1—O3	122.16 (6)	N1—C12—C4	123.6 (2)
O4—Sm1—O3	52.42 (5)	N1—C12—C11	118.0 (2)
O2 ⁱ —Sm1—O2	73.28 (5)	C4—C12—C11	118.4 (2)
O6 ⁱ —Sm1—O2	71.91 (5)	O1—C13—O2	120.2 (2)
O5—Sm1—O2	72.00 (5)	O1—C13—C14	122.54 (19)
O4—Sm1—O2	152.38 (5)	O2—C13—C14	117.24 (19)
O3—Sm1—O2	140.97 (5)	C13—C14—C15	114.8 (2)
O2 ⁱ —Sm1—O1	121.53 (5)	C13—C14—H14A	108.6
O6 ⁱ —Sm1—O1	74.39 (6)	C15—C14—H14A	108.6
O5—Sm1—O1	98.12 (5)	C13—C14—H14B	108.6
O4—Sm1—O1	143.28 (6)	C15—C14—H14B	108.6
O3—Sm1—O1	139.62 (5)	H14A—C14—H14B	107.6
O2—Sm1—O1	50.24 (4)	C14—C15—H15A	109.5
O2 ⁱ —Sm1—N2	143.24 (6)	C14—C15—H15B	109.5
O6 ⁱ —Sm1—N2	81.08 (5)	H15A—C15—H15B	109.5
O5—Sm1—N2	138.59 (6)	C14—C15—H15C	109.5
O4—Sm1—N2	80.02 (6)	H15A—C15—H15C	109.5
O3—Sm1—N2	71.19 (5)	H15B—C15—H15C	109.5
O2—Sm1—N2	124.81 (5)	O3—C16—O4	121.4 (2)
O1—Sm1—N2	76.74 (5)	O3—C16—C17	119.3 (2)
O2 ⁱ —Sm1—N1	150.52 (6)	O4—C16—C17	119.2 (2)
O6 ⁱ —Sm1—N1	133.27 (6)	C16—C17—C18	111.1 (2)
O5—Sm1—N1	77.04 (6)	C16—C17—H17A	109.4
O4—Sm1—N1	74.42 (6)	C18—C17—H17A	109.4
O3—Sm1—N1	113.75 (5)	C16—C17—H17B	109.4
O2—Sm1—N1	104.70 (5)	C18—C17—H17B	109.4
O1—Sm1—N1	69.73 (5)	H17A—C17—H17B	108.0
N2—Sm1—N1	62.50 (6)	C17-C18-H18A	109.5
$O2^{i}$ —Sm1—Sm1 ⁱ	38.07 (4)	C17—C18—H18B	109.5
O6 ⁱ —Sm1—Sm1 ⁱ	69.18 (4)	H18A—C18—H18B	109.5
O5—Sm1—Sm1 ⁱ	68.86 (4)	C17—C18—H18C	109.5
O4—Sm1—Sm1 ⁱ	127.66 (4)	H18A—C18—H18C	109.5
O3—Sm1—Sm1 ⁱ	111.02 (4)	H18B—C18—H18C	109.5
O2—Sm1—Sm1 ⁱ	35.21 (3)	O6—C19—O5	126.0 (2)
O1—Sm1—Sm1 ⁱ	84.44 (3)	O6—C19—C20	117.7 (2)
N2—Sm1—Sm1 ⁱ	148.20 (4)	O5-C19-C20	116.3 (2)
N1—Sm1—Sm1 ⁱ	133.44 (4)	C21—C20—C19	114.9 (2)
N1—C1—C2	123.7 (3)	C21—C20—H20A	108.5

N1—C1—H1	118.2	C19—C20—H20A	108.5
C2—C1—H1	118.2	C21—C20—H20B	108.5
C3—C2—C1	118.4 (3)	С19—С20—Н20В	108.5
С3—С2—Н2	120.8	H20A—C20—H20B	107.5
C1—C2—H2	120.8	C20-C21-H21A	109.5
C2—C3—C4	120.1 (2)	C20—C21—H21B	109.5
С2—С3—Н3	119.9	H21A—C21—H21B	109.5
С4—С3—Н3	119.9	C20—C21—H21C	109.5
C12—C4—C3	116.8 (2)	H21A—C21—H21C	109.5
C12—C4—C5	121.0 (2)	H21B-C21-H21C	109.5
C3—C4—C5	122.2 (2)	C1—N1—C12	117.4 (2)
C6—C5—C4	120.3 (2)	C1—N1—Sm1	122.88 (16)
С6—С5—Н5	119.8	C12—N1—Sm1	119.68 (14)
С4—С5—Н5	119.8	C10—N2—C11	117.88 (18)
C5—C6—C7	121.1 (2)	C10—N2—Sm1	120.43 (14)
С5—С6—Н6	119.4	C11—N2—Sm1	121.67 (14)
С7—С6—Н6	119.4	C13—O1—Sm1	93.45 (12)
C8—C7—C11	117.8 (2)	C13—O2—Sm1 ⁱ	149.14 (14)
C8—C7—C6	122.6 (2)	C13—O2—Sm1	94.89 (12)
C11—C7—C6	119.6 (2)	Sm1 ⁱ —O2—Sm1	106.72 (5)
C9—C8—C7	119.5 (2)	C16—O3—Sm1	91.82 (14)
С9—С8—Н8	120.2	C16—O4—Sm1	93.81 (14)
С7—С8—Н8	120.2	C19—O5—Sm1	137.89 (15)
C8—C9—C10	119.1 (2)	C19—O6—Sm1 ⁱ	137.17 (14)
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

Fig. 1

